
Journal of Astronomical History and Heritage, 19(3), 247–254 (2016). 

 

  
Page 247 

 

  

A LUNAR ECLIPSE VOLVELLE IN PETRUS APIANUS’ 
ASTRONOMICUM CAESAREUM 

 
Lars Gislén 

Lund University, Dala 7163, 242 97 Hörby, Sweden. 
LarsG@vasterstad.se 

 

Abstract: The workings and theory of an eclipse volvelle in Petrus Apianus’ Astronomicum Caesareum is investi-

gated.  This paper also tries to explain how the volvelle was implemented from the theory and what values were 
given to the parameters that were used for the calculations.  Results from model computations are presented. 
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1  INTRODUCTION 
 

Petrus Apianus (Figure 1; also Peter Apian), 
whose surname is a Latinized version of his 
original family name Bienewitz, was born the 
son of a shoemaker in Leisnig (Germany) in 
about 1501 and died in Ingolstadt (Germany) in 
1552 (Galle, 2014).  He began his studies at the 
University of Leipzig in 1516 but moved to the 
University of Vienna in 1519 where he studied 
mathematics, astronomy and astrology.  In 1527 
he was appointed a Professor of Mathematics at 
the University of Ingolstadt and soon achieved 
fame as an astronomer and astrologer.  He pub-
lished several works on comets and instruments 
for the calculation and astronomical observation, 
and he observed Halley’s Comet.  But his mast-
erpiece was Astronomicum Caesareum (Api-
anus, 1540a), which was dedicated to the 
Roman Emperor Charles V (1500–1558).  It is 
based in the Ptolemaic model of the Universe 
and the fundamental parameters are the same 
as in the Alfonsine Tables (1518) although it 
seems from preliminary computer calculations 
that I have made that Petrus Apianus in some 
cases made some small modifications.  Astro-
nomicum Caesareum contains a large set of 
ingeniously-constructed volvelles for computing 
the true locations of the Sun, Moon and planets, 
as well as an extensive set for different kinds of 
eclipse calculations.  His work earned him an 
appointment as Imperial Mathematician.  
 

Petrus Apianus (1540b) also published a 
manual in German for Astronomicum Caesar-
eum.  A review of Astronomicum Caesareum 
has been given by Gingerich (1971).  At that 
time, about 120 copies of the original work were 
still extant.  In 1967, a facsimile of Astronom-
icum Caesareum was published (Apianus, 
1967).   

 

There is a very complete compilation on diff-
erent aspects of Apianus’ life and work edited by 
Karl Röttel (1995) in connection with an exhibit-
tion on Apianus that was held in Leisnig in 1996 
and Landrats-amt Neumarkt in 1997. 
 

In this paper we study one of the volvelles 
(Figure 2) that Apianus (1967: 73) used for lunar 

eclipse calculations.  As with all the other vol-
velles in Petrus Apianus’ work, one cannot help 
but be impressed by the amount of mental and 
manual effort and skill that was used in creating 
this volvelle.  Here, we try to investigate how 
this volvelle was constructed. 
 
2 OVERVIEW OF THE VOLVELLE 
 

At the top of the volvelle there is a panel for 
setting up the volvelle, given the anomalies of the 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Petrus Apianus (courtesy: Instituto e Museo della 
Sciencia, Florence). 

 
Moon and the Sun.  There are then four sep-
arate panels grouped clockwise around the 
centre, the first for determining the size of the 
eclipse, N. PVNCTA ECLIPTICA, the second 
one for determining half the time of the totality, 
MORA MEDIA, the third one for determining the 
time of partiality, TEMPVS CASUS, and finally 
the last one for determining the angular move-
ment of the Moon during the eclipse, MINVTA 
GRA. MOTVS LUNE.  Each of these panels ex- 
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Figure 2: The eclipse volvelle (Photograph: Lars Gislén). 

 
hibits  an intricate set of  curves.  In  the case of 
the size of  the eclipse, each curve represents a 
certain eclipse size, for the mora media and 
tempus casus the curves show the half duration 
in hours and minutes of the totality and partiality 
respectively, for the minuta motus panel, the 
movement of the Moon in arc minutes during the 
eclipse. 
 

The lunar anomaly is set in the top panel on 
the left and right hand scales, graduated from 
sign 1 to 6 and 7 to 12 respectively.  The solar 
anomaly is set by the top scale along the edge 
of the volvelle.  There are two different threads, 
red and blue, attached to different centres A and 
B.  Centre A is the centre of the entire volvelle 
while B is slightly displaced to the left.  The two 
threads presumably had small beads that could 
slide along the threads with some friction.  You 

first use the blue thread and stretch it along the 
left scale, setting the bead at the given anomaly 
of the Moon.  For lunar anomalies with signs 7 
to 12 the right hand scale is used.  The red 
thread is then stretched and set against the 
solar anomaly on the upper scale.  The blue 
thread is rotated until its bead crosses the red 
thread and the bead on the red thread is fixed at 
that point.  Finally, the red thread is rotated to 
the respective panels and set against the given 
lunar latitude and a value is read off from the 
curve under the bead, possibly interpolating be-
tween two curves. 

 

The volvelle raises some questions.  It is 
evident that the lunar and solar anomalies are 
not independent.  So for instance a setting with 
lunar anomaly zero signs, solar anomaly zero 
signs gives the same result as a setting of lunar 
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anomaly 11 signs 10°, solar anomaly 6 signs.  
For this reason, I have treated the volvelle as 
having solar anomaly zero and refer the inclu-
sion of the solar anomaly to the discussion at 
the end of the paper. 
 

3  NOTATION 
 

The lunar latitude is denoted by .  All angular 
measures are made in minutes of arc.  The 
Moon’s apparent radius is r and the radius of the 
shadow is R.  As in the Almagest (Toomer, 
1984: 254), it is assumed that R = 2.6r.  The 
radius is a function of the Moon’s distance from 
the Earth, which in turn is a function of the lunar 

anomaly, M.  Figure 3 comes from the Alfonsine 
Tables (1518: 234) and shows the apparent 
radii of the Sun, the Moon and the shadow as a 
function of their respective anomalies.  Note that 
the Alfonsine Tables use sexagesimal notation 
for the anomaly, for instance 1:30 in the first 
column is 60 + 30 = 90.  The last column in the 
table shows the correction to the radius of the 

shadow as a function of the solar anomaly S.  
The shadow becomes slightly smaller as the 
Sun gets closer to the Earth, the largest shadow 
correction being –56″, see the Appendix at the 
end of this paper. 
 

The very small influence on the theory from 
the inclination of the Moon’s orbit is neglected. 
 

4  THE DIFFERENT PANELS OF THE LUNAR 
    VOLVELLE 
 

4.1  Theory 
 

4.1.1  Puncta Ecliptica, p, the Size of the Eclipse 
 

This is expressed as the fraction of the lunar 
diameter that is obscured, in units such that a 
total eclipse has size 12 or larger.  The mathe-
matical expression is: 
 

p = 12(R + r –  ) / 2r = 21.6 – 6/r            (1) 
 

It is easy to see that if  = R + r, the size of the 

eclipse is zero, while if = R – r, the size is 12, 
the lower limit for a total eclipse.  The maximum 

possible eclipse will be for  = 0 when the size is 
21.6. 
 

4.1.2  Mora Media, the Half Duration of the 
          Totality, tm  
 

From Figure 4 the distance AB is seen by the 
Pythagorean theorem to be 
 

m = √((R – r )
2 

– 
2
)                            (2) 

 

In time units (minutes) tm = 60m / (M – S), 

where M is the angular speed of the Moon per 

hour and S the corresponding angular speed of 
the Sun.  These speeds are a function of the 
respective anomalies.  For the Sun this depend-
ence is quite small and can be taken as con-
stant as in the Almagest (Toomer, 1984: 306) 

where M  – S  = M  / (1+1/12).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: A table from the Alfonsine Tables. 

 
4.1.3  Tempus Casus, the Half Duration of the  
          Partiality tc  
 

This is the difference between the half the total 
time for the eclipse, AC, and half the time of the 
totality, AB. Again using the figure above we get 
 

c = √((R + r )
2 

– 
2
) – √((R – r )

2 
– 

2
) if  < R – r   (3a) 

c = √((R + r )
2 

– 
2
) if  <R – r  (no total eclipse)    (3b) 

 

In time units (minutes) tc = 60 c / (M  – S). 
 

Figure 5 shows a sketch of the tempus casus 
function.  The function is here drawn with r = 1, 
R = 2.6.  The slope of the curve gets infinite for 

 = R – r with c = 2√(Rr).  Petrus Apianus’ 
volvelle panel effectively shows a contour plot of 
the ‘mountain ridge’ in the figure as the Moon’s 
anomaly varies. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Eclipse geometry. 
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Figure 5: The tempus casus function. 

 
4.1.4  Minuta Motus, the Moon’s Movement 
          During (Half of) the Eclipse 
 

The Moon’s angular movement, a, relative to the 
shadow disk is 
 

a = √((R + r )
2 

– 
2
)            (4) 

 

The corresponding time is calculated as above 
by dividing this by the relative speed of the Moon  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6: The eclipse size graph. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: The mora media graph. 

and the Sun.  Multiplying this by the Moon’s an-
gular speed will give the Moon’s movement, 
 

  = aM / (M  – S)              (5) 

 
4.2  The Implementation of the Theory 
 

The mathematical expressions above are some-
what complicated, especially for the tempus 
casus case.  In order to draw the panel curves 
we want the variation of the lunar latitude as we 
move along a curve with constant value of for 
instance the duration of the totality.  This means 
that we would have to invert relations (1)–(4), 
something that in the case of the tempus casus 
function is mathematically quite difficult.  A 
much simpler—and I believe for Petrus Apianus 
more natural—procedure would be to graph the 
respective functions, select a value for the para-

meter of interest and read off corresponding  
value manually.  It is rather easy to plot curves 
for different R and r as the Moon’s anomaly 
varies.  It would also be enough to plot curve 
points in the volvelle panels for a few values of 
this anomaly and then connect these points by 
hand.  In the graphs below I have only com-
puted results for lunar anomalies 0°, 90° and 
180°, in some cases where the panel curves are 
less linear I have also used intermediate lunar 
anomalies of 45° and 135°. 

 
4.2.1  Puncta Ecliptica, the Size of the Eclipse  
 

The three lines in Figure 6 were constructed by 
taking the values for r from the Alfonsine Tables 
for anomaly 0° (14′ 30″), 90° (15′ 59″) and 180° 
(18′ 4″) and inserting them in expression (1) and 
plotting the resulting three straight lines. 
 

If we follow the line of, for instance, eclipse 
size 12 to the magenta curve (anomaly 180°) we 

get  = 29′.  The red curve (anomaly 90°) gives 

 = 26′, and the blue curve (anomaly 0°) gives  
= 23′.  This corresponds excellently with the 
curve on the volvelle. 

 
4.2.2  Mora Media, the Half Duration of the 
          Totality 
 

Again I have plotted three curves (Figure 7) 
using the tabular values of R and r and the 
formula (2) for anomaly 0°, 90° and 180°.  A 
problem here is that I also need values of the 
lunar angular speed that depends on the anom-
aly.  There is a table for these values in the Al-
fonsine Tables (1518: 190–191).  However, us-
ing these values does not give a perfect fit, 
especially for the mora media panel. 
 

I am not sure which version of the Alfonsine 
Tables was used by Petrus Apianus; there quite 
a few that are possible, with slightly different 
tabular values.  Instead I have made a weighted 
least square fit of the curve values in the panels 
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and the theoretical values.  The fit has to be 

weighted because the  scale in the panels is in 
many cases non-linear, for the tempus casus 
panel very much so.  Table 1 shows the best fit 

values for M – S in the mora media and temp-
us casus panels. 
 

The values do not deviate very much from 
these you get from the Alfonsine Tables that I 
have consulted, except for lunar anomaly 180° 
(see Figure 7). 

 
4.2.3  Tempus Casus, the Half Duration of the 
          Partiality 
 

In Figure 8, it should be mentioned that where 
the curves are more or less horizontal, the point 
where the curves cross a horizontal line is not 

very well defined and the value of  is not very 
precise.  This is the case when the lunar latitude 
is small. 

 
4.2.4  Minuta Motus, the Moon’s Movement 
          During Half of the Eclipse 
 

Here (Figure 9) the ratio M / (M  – S) is 
essentially constant—its variation with the lunar 
anomaly is very small.  I used values of vM from 

the Alfonsine Tables and S = 2.38, the tabular 
value for solar anomaly 0°.  Thus, the only 
important dependence comes from the variation 
of R and r. 

 
5  RESULTS 
 

Figure 10 shows the volvelle with some 
calculated points (red) using the procedures 
above.  For the size panel I have calculated 
points for eclipse sizes 6, 12, and 10.  In the 
mora media panel points are for times 45 and 
25 minutes and in the tempus casus panel for 
times 1 hour and 1 hour 20 minutes.  The white 
points mark the ‘crest’ of the tempus casus 
curve.  In the minuta motus panel, points are 
calculated for 20, 45, 55, 60 and 65 minutes. 

 
6  TWO EXAMPLES 
 

In Astronomicum Caesareum there are two 
examples of eclipse calculations.  The first is 
related to the year of birth of Emperor Charles V 
and was a partial lunar eclipse on AD 5 Nov-
ember 1500.  Petrus Apianus gives the solar 
anomaly as 4 signs 23° 29′, the lunar anomaly 
as 9 signs 22° 59′, and the Moons latitude as 29′ 
[south].  The anomaly entry is marked by a small 
letter C that can be seen in the top panel of 
Figure 2.  Moving to the puncta ecliptica panel 
we find the letter C marked corresponding to the 
Moon’s latitude 29′ and the eclipse size can be 
read off as 10.  In the mora media panel the 
corresponding point shows that there was no 
totality.  In the tempus casus panel, point C gives 

Table 1. Parameter values of vM – vS for best fit. 
 

Lunar Anomaly 0° 90° 180° 

Mora media 28.05 30.3 34.11 
Tempus casus 27.38 30.32 34.43 
Alfonsine Tables 27.92 30.32 33.41 

 
the half duration of the partiality as 1 hour 35 
minutes and finally the minuta motum panel 
shows that the Moon moved 49′ during this time.  
I checked the result with a modern ephemeris 
program: eclipse size 10.6, half duration 1:36, 
and Moon’s movement 56′. 
 

The second example in Astronomicum Cae-
sareum is the partial lunar eclipse on AD 15 
October 1502, preceding the birth of King Ferd-
inand I, one of the brothers of Charles V.  The 
solar anomaly was 4 signs 2° 12′, the lunar 
anomaly 6 signs 15° 33′, and the Moon’s latitude 
55′ north.  The entry point is marked in the top 
panel by the letter R.  This gives the eclipse size 
as 3, no totality, half duration of partiality 56 
minutes, and Moon’s movement 34′.  The mod-
ern values are respectively 3.4, 56, and 37. 

 
7  DISCUSSION 
 

The above procedures explain and give results 
that agree very well with the different curve sets 
in the volvelle panels.  So far, however, the in-
fluence of the solar anomaly has been neglected 
This will influence two things: the apparent angu- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: The tempus casus graph. 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 9: The minuta motus graph. 

 



Lars Gislén                                        Petrus Apianus’ Lunar Eclipse Volvelle 

 

  
Page 252 

 

  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 10: Simulation results. 

 
lar speed of the Sun and also the size of the 
shadow.  The variation of the solar speed makes 
a very small impact on the results and I believe 
that it was purposely neglected by Petrus Api-
anus.  The change in the radius of the shadow 
is also rather small but if neglected one would 
ask why the volvelle required a scale for setting 
the solar anomaly.  However, the volvelle curves 
can be extremely well simulated for most of their 
extent, with the influence of the solar anomaly 
entirely neglected.  Only the strip nearest to the 
centre of the volvelle is still undetermined.  I will 
now consider in more detail the mora media 
panel.  
 

As the solar anomaly increases from 0° to 
180°, the shadow radius shrinks, slowly to begin 
with, more rapidly after 90° and has finally de-
creased by 56″ ≈ 1′ at 180°.  As the elongation 

speed is of order 30′ per hour, the time of the 

totality for  = 0 will be shortened by about 

60·1/30 = 2 minutes.  For larger values of   this 

time correction will be larger but even at  = 20′ 
it is only about 3 minutes.  We also notice that, 
as the lunar and solar anomalies are set in the 
volvelle, they are not independent.  If we ex-
amine the volvelle it is evident that the panel 
curves in general show a rather abrupt small 

change of direction towards smaller values of  

in the strip closest to the centre.  I believe that 
the solar anomaly correction was only imple-
mented by Petrus Apianus in this strip.  I have 
simulated this by points corresponding to lunar 
anomaly 0° and solar anomaly 180° at the inner 
border of the mora media panel where for in-
stance the point on the curve representing a 45 
minute duration has been calculated for 47 min-
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utes, lunar anomaly 0° and solar anomaly 180°, 
and then corrected by 2 minutes, 47 – 2 = 45.  
The simulated point is marked by a green dot.  
A similar procedure gives another green dot on 
the 25 minutes curve.  Both these points agree 
very nicely with the panel curves. 

  

In the tempus casus panel, the curves are 
the result of the difference between two square 
roots and we expect the time correction to be 
smaller.  A similar, but slightly more involved, 
computation as for the tempus casus panel, 
indeed shows that the time correction in this 
case is very small, in general much less that 
one minute.  This is also evident from an in-
spection of the panel curves, there is no or very 
small change in the direction of these curves in 
the strip closest to the inner border of the panel.  
The only panel posing a problem is the minuta 
motus panel where the curves in the strip dev-
iate in the wrong direction—the curves on the 
volvelle indicate that the Moon moves a larger 
angular distance as the shadow radius shrinks, 
which must be wrong.  I cannot explain this, 
although a possible explanation may be that 
there was an error in the layout of the curves in 
this part of the panel.  
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10  APPENDIX: THE SHADOW CORRECTION 
 

We refer to Figure 11 showing the Sun, the 
Earth and the shadow plane where the Moon is 
located.  D is the Sun-Earth distance, d the 
Earth-Moon distance, and x the distance from 
the shadow plane to the shadow apex.  R is the 
radius of the Sun, r the radius of the Earth, and 
S the radius of the shadow.  The apex angle is 
small, of the order of 0.5 and we can use the 
approximation that the sine of this angle is equal 
to the tangent of this angle and also equal to the 
angle itself, expressed in radians.  We also see 
that the shadow becomes smaller when the 
solar distance decreases. 
 

From equal triangles we have 
 

(D + d + x) / R = (d + x) / r = x / S 
 

The first equality gives x = D·r / (R – r ) – d 
 

Inserting this in the last equality we get 
 

S = r – (R – r ) d / D 
 

The apparent angular size of the shadow (in 
radians) as seen from the Earth is 
 

  ≈ S / d = r / d –(R – r ) / D 
 

At the maximum distance of the Sun where the 
Sun-Earth distance is D0 we have  
 

0 = S / d = r / d –(R – r ) / D0 
 

The change in angular size is  = 0– = (R 
– r ) (1/ D0 – 1/D) 
 

In the Ptolemaic model D = DM·√(1 + e
2
 + 2e 

cos  ) = DM (1 + e) √(1 – 4e sin
2
 (/2) / (1 + 

e)
2
). 

 

where DM is the mean solar distance and e the 

eccentricity of the Sun, and  the anomaly of the 
Sun. 
 

At maximum distance where = 0we have D0 = 

DM (1 + e).  This gives 
 

 = (R – r ) (1 – 1/√(1 – 4e sin
2
 (/2) / (1 + e)

2
)) 

/ (DM (1 + e)). 
 

The eccentricity is a small quantity and we can 
Taylor expand the second term in the bracket 
skipping higher orders of e:  

 
 
 
 
 
 
 
 

 

 
Figure 11: The eclipse shadow. 
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1/√(1 – 4e sin
2
 (/2) / (1 + e)

2
) ≈ 1 + 2e sin

2
 

(/2) / (1 + e)
2
 

 

Thus we finally get 
 

  = –2e (R – r ) sin
2
 (/2) /( DM (1 + e)

3
). 

 

We now insert Ptolemy’s values R = 5.5, r = 1, 
DM = 1210, e = 2.5 / 60 = 0.0417 (Toomer, 
1984: 158, 257) and convert to arc seconds by 

multiplying with the factor 3600·180/ 
 

  = –56.6″ sin
2
 /2). 

 

The value used in the Alfonsine Tables in Figure 
2 is a rounded down value of 56″. 
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